skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Hohil, Myron E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Schwartz, Peter J; Hohil, Myron E (Ed.)
    Free, publicly-accessible full text available May 28, 2026
  2. Schwartz, Peter J; Hohil, Myron E (Ed.)
    Free, publicly-accessible full text available May 28, 2026
  3. Schwartz, Peter J; Hohil, Myron E; Jensen, Benjamin (Ed.)
  4. Schwartz, Peter J; Hohil, Myron E; Jensen, Benjamin (Ed.)
  5. Pham, Tien; Solomon, Latasha; Hohil, Myron E. (Ed.)
  6. Pham, Tien; Solomon, Latasha; Hohil, Myron E. (Ed.)
    Explainable Artificial Intelligence (XAI) is the capability of explaining the reasoning behind the choices made by the machine learning (ML) algorithm which can help understand and maintain the transparency of the decision-making capability of the ML algorithm. Humans make thousands of decisions every day in their lives. Every decision an individual makes, they can explain the reasons behind why they made the choices that they made. Nonetheless, it is not the same in the case of ML and AI systems. Furthermore, XAI was not wideley researched until suddenly the topic was brought forward and has been one of the most relevant topics in AI for trustworthy and transparent outcomes. XAI tries to provide maximum transparency to a ML algorithm by answering questions about how models effectively came up with the output. ML models with XAI will have the ability to explain the rationale behind the results, understand the weaknesses and strengths the learning models, and be able to see how the models will behave in the future. In this paper, we investigate XAI for algorithmic trustworthiness and transparency. We evaluate XAI using some example use cases and by using SHAP (SHapley Additive exPlanations) library and visualizing the effect of features individually and cumulatively in the prediction process. 
    more » « less
  7. Pham, Tien; Solomon, Latasha; Hohil, Myron E. (Ed.)
    The Internet of Battlefield Things (IoBT) will advance the operational effectiveness of infantry units. However, this requires autonomous assets such as sensors, drones, combat equipment, and uncrewed vehicles to collaborate, securely share information, and be resilient to adversary attacks in contested multi-domain operations. CAPD addresses this problem by providing a context-aware, policy-driven framework supporting data and knowledge exchange among autonomous entities in a battlespace. We propose an IoBT ontology that facilitates controlled information sharing to enable semantic interoperability between systems. Its key contributions include providing a knowledge graph with a shared semantic schema, integration with background knowledge, efficient mechanisms for enforcing data consistency and drawing inferences, and supporting attribute-based access control. The sensors in the IoBT provide data that create populated knowledge graphs based on the ontology. This paper describes using CAPD to detect and mitigate adversary actions. CAPD enables situational awareness using reasoning over the sensed data and SPARQL queries. For example, adversaries can cause sensor failure or hijacking and disrupt the tactical networks to degrade video surveillance. In such instances, CAPD uses an ontology-based reasoner to see how alternative approaches can still support the mission. Depending on bandwidth availability, the reasoner initiates the creation of a reduced frame rate grayscale video by active transcoding or transmits only still images. This ability to reason over the mission sensed environment, and attack context permits the autonomous IoBT system to exhibit resilience in contested conditions. 
    more » « less
  8. Pham, Tien; Solomon, Latasha; Hohil, Myron E. (Ed.)
  9. Pham, Tien; Solomon, Latasha; Hohil, Myron E. (Ed.)
  10. Pham, Tien; Solomon, Latasha; Hohil, Myron E. (Ed.)